Investigation of anomalous estimates of tensor-derived quantities in diffusion tensor imaging.
نویسندگان
چکیده
The diffusion tensor is typically assumed to be positive definite. However, noise in the measurements may cause the eigenvalues of the tensor estimate to be negative, thereby violating this assumption. Negative eigenvalues in diffusion tensor imaging (DTI) data occur predominately in regions of high anisotropy and may cause the fractional anisotropy (FA) to exceed unity. Two constrained least squares methods for eliminating negative eigenvalues are explored. These methods, the constrained linear least squares method (CLLS) and the constrained nonlinear least squares method (CNLS), are compared with other commonly used algebraic constrained methods. The CLLS tensor estimator can be shown to be equivalent to the linear least squares (LLS) tensor estimator when the LLS tensor estimate is positive definite. Similarly, the CNLS tensor estimator can be shown to be equivalent to the nonlinear least squares (NLS) tensor estimator when the NLS tensor estimate is positive definite. The constrained least squares methods for eliminating negative eigenvalues are evaluated with both simulations and in vivo human brain DTI data. Simulation results show that the CNLS method is, in terms of mean squared error for estimating trace and FA, the most effective method for correcting negative eigenvalues.
منابع مشابه
Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملAnomalous Diffusion Tensor Imaging
Introduction The observation of non-monoexponential decay of diffusion-weighted MR signals with b-value has been widely reported [1]. Using the theory of anomalous diffusion, several groups have derived a stretched-exponential form for this signal decay (e.g. [2][3]) which parameterises the signal in terms of a distributed diffusivity α (measuring the overall rate of diffusion) and an anomalous...
متن کاملEvaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies
Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...
متن کاملThe Asymptotic Behavior of the Nonlinear Estimators of the Diffusion Tensor and Tensor-Derived Quantities with Implications for Group Analysis
Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging (MRI) method that is used to study the microstructural properties of white matter in the brain. Tensor-derived quantities, such as the trace and fractional anisotropy (FA), are important for characterizing the normal, diseased, and developing brain. Consequently, determining the statistical properties of the diffusion t...
متن کاملFiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation
Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres. In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2006